A Posteriori Error Analysis of the Time Dependent Stokes Equations with Mixed Boundary Conditions

نویسندگان

  • CHRISTINE BERNARDI
  • TONI SAYAH
چکیده

In this paper we study the time dependent Stokes problem with mixed boundary conditions. The problem is discretized by the backward Euler’s scheme in time and finite elements in space. We establish an optimal a posteriori error with two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Analysis of the Time Dependent Navier-stokes Equations with Mixed Boundary Conditions

In this paper we study the time dependent Navier-Stokes problem with mixed boundary conditions. The problem is discretized by the backward Euler’s scheme in time and finite elements in space. We establish optimal a posteriori error estimates with two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization. We fin...

متن کامل

A Posteriori Error Estimator for Mixed Approximation of the Navier-Stokes Equations with the Boundary Condition

In this paper, we introduce the Navier-Stokes equations with a new boundary condition. In this context, we show the existence and uniqueness of the solution of the weak formulation associated with the proposed problem. To solve this latter, we use the discretization by mixed finite element method. In addition, two types of a posteriori error indicator are introduced and are shown to give global...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Stabilized finite element method for Navier-Stokes equations with physical boundary conditions

This paper deals with the numerical approximation of the 2D and 3D Navier-Stokes equations, satisfying nonstandard boundary conditions. This lays on the finite element discretisation of the corresponding Stokes problem, which is achieved through a three-fields stabilized mixed formulation. A priori and a posteriori error bounds are established for the nonlinear problem, ascertaining the converg...

متن کامل

A posteriori error estimators for the fully discrete time dependent Stokes problem with some different boundary conditions

In this paper we study the time dependent Stokes problem with some different boundary conditions. We establish a decoupled variational formulation into a system of velocity and a Poisson equation for the pressure. Hence, the velocity is approximated with curl conforming finite elements in space and Euler scheme in time and the pressure with standard continuous elements in space and Euler scheme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013